145 research outputs found

    Dose-response of sodium bicarbonate ingestion highlights individuality in time course of blood analyte responses

    Get PDF
    To defend against hydrogen cation accumulation and muscle fatigue during exercise, sodium 20 bicarbonate (NaHCO3) ingestion is commonplace. The individualised dose-response relationship 21 between NaHCO3 ingestion and blood biochemistry is unclear. The present study investigated the 22 bicarbonate, pH, base excess and sodium responses to NaHCO3 ingestion. Sixteen healthy males (23±2 23 years; 78.6±15.1 kg) attended three randomised order-balanced, non-blinded sessions, ingesting a single 24 dose of either 0.1, 0.2 or 0.3 g.kg-1BM of NaHCO3 (Intralabs, UK). Fingertip capillary blood was 25 obtained at baseline and every 10 min for 1 h, then every 15 min for a further 2 h. There was a significant 26 main effect of both time and condition for all assessed blood analytes (P≀0.001). Blood analyte 27 responses were significantly lower following 0.1 g.kg-1BM compared with 0.2 g.kg-1BM; bicarbonate 28 concentrations and base excess were highest following ingestion of 0.3 g.kg-1BM (P≀0.01). Bicarbonate 29 concentrations and pH significantly increased from baseline following all doses; the higher the dose the 30 greater the increase. Large inter-individual variability was shown in the magnitude of the increase in 31 bicarbonate concentrations following each dose (+2.0-5; +5.1-8.1; and +6.0-12.3 mmol·L-1 for 0.1, 0.2 32 and 0.3 g.kg-1BM) and in the range of time to peak concentrations (30-150; 40-165; and 75-180 min for 33 0.1, 0.2 and 0.3 g.kg-1BM). The variability in bicarbonate responses was not affected by normalisation 34 to body mass. These results challenge current practices relating to NaHCO3 supplementation and clearly 35 show the need for athletes to individualise their ingestion protocol and trial varying dosages prior to 36 competition

    Nutrition Strategies for Triathlon

    Get PDF
    Contemporary sports nutrition guidelines recommend that each athlete develop a personalised, periodised and practical approach to eating that allows him or her to train hard, recover and adapt optimally, stay free of illness and injury and compete at their best at peak races. Competitive triathletes undertake a heavy training programme to prepare for three different sports while undertaking races varying in duration from 20 min to 10 h. The everyday diet should be adequate in energy availability, provide CHO in varying amounts and timing around workouts according to the benefits of training with low or high CHO availability and spread high-quality protein over the day to maximise the adaptive response to each session. Race nutrition requires a targeted and well-practised plan that maintains fuel and hydration goals over the duration of the specific event, according to the opportunities provided by the race and other challenges, such as a hot environment. Supplements and sports foods can make a small contribution to a sports nutrition plan, when medical supplements are used under supervision to prevent/treat nutrient deficiencies (e.g. iron or vitamin D) or when sports foods provide a convenient source of nutrients when it is impractical to eat whole foods. Finally, a few evidence-based performance supplements may contribute to optimal race performance when used according to best practice protocols to suit the triathlete’s goals and individual responsiveness

    MRI Natural History of the Leukodystrophy Vanishing White Matter

    Get PDF
    Background: In vanishing white matter (VWM), a form of leukodystrophy, earlier onset is associated with faster clinical progression. MRI typically shows rarefaction and cystic destruction of the cerebral white matter. Information on the evolution of VWM according to age at onset is lacking. / Purpose: To determine whether nature and progression of cerebral white matter abnormalities in VWM differ according to age at onset. / Materials and Methods: Patients with genetically confirmed VWM were stratified into six groups according to age at onset: younger than 1 year, 1 year to younger than 2 years, 2 years to younger than 4 years, 4 years to younger than 8 years, 8 years to younger than 18 years, and 18 years or older. With institutional review board approval, all available MRI scans obtained between 1985 and 2019 were retrospectively analyzed with three methods: (a) ratio of the width of the lateral ventricles over the skull (ventricle-to-skull ratio [VSR]) was measured to estimate brain atrophy; (b) cerebral white matter was visually scored as percentage normal, hyperintense, rarefied, or cystic on fluid-attenuated inversion recovery (FLAIR) images and converted into a white matter decay score; and (c) the intracranial volume was segmented into normal-appearing white and gray matter, abnormal but structurally present (FLAIR-hyperintense) and rarefied or cystic (FLAIR-hypointense) white matter, and ventricular and extracerebral cerebrospinal fluid (CSF). Multilevel regression analyses with patient as a clustering variable were performed to account for the nested data structure. / Results: A total of 461 examinations in 270 patients (median age, 7 years [interquartile range, 3–18 years]; 144 female patients) were evaluated; 112 patients had undergone serial imaging. Patients with later onset had higher VSR [F(5) = 8.42; P < .001] and CSF volume [F(5) = 21.7; P < .001] and lower white matter decay score [F(5) = 4.68; P < .001] and rarefied or cystic white matter volume [F(5) = 13.3; P < .001]. Rate of progression of white matter decay scores [b = –1.6, t(109) = –3.9; P < .001] and VSRs [b = –0.05, t (109) = –3.7; P < .001] were lower with later onset. / Conclusion: A radiologic spectrum based on age at onset exists in vanishing white matter. The earlier the onset, the faster and more cystic the white matter decay, whereas with later onset, white matter atrophy and gliosis predominate

    Warm-up intensity does not affect the ergogenic effect of sodium bicarbonate in adult men

    Get PDF
    This study determined the influence of a high- (HI) versus low-intensity (LI) cycling warm-up on blood acid-base responses and exercise capacity following ingestion of sodium bicarbonate (SB; 0.3 g/kg body mass) or a placebo (PLA; maltodextrin) 3 hr prior to warm-up. Twelve men (21 ± 2 years, 79.2 ± 3.6 kg body mass, and maximum power output [Wmax] 318 ± 36 W) completed a familiarization and four double-blind trials in a counterbalanced order: HI warm-up with SB, HI warm-up with PLA, LI warm-up with SB, and LI warm-up with PLA. LI warm-up was 15 min at 60% Wmax, while the HI warm-up (typical of elites) featured LI followed by 2 × 30 s (3-min break) at Wmax, finishing 30 min prior to a cycling capacity test at 110% Wmax. Blood bicarbonate and lactate were measured throughout. SB supplementation increased blood bicarbonate (+6.4 mmol/L; 95% confidence interval, CI [5.7, 7.1]) prior to greater reductions with HI warm-up (-3.8 mmol/L; 95% CI [-5.8, -1.8]). However, during the 30-min recovery, blood bicarbonate rebounded and increased in all conditions, with concentrations ∌5.3 mmol/L greater with SB supplementation (p < .001). Blood bicarbonate significantly declined during the cycling capacity test at 110%Wmax with greater reductions following SB supplementation (-2.4 mmol/L; 95% CI [-3.8, -0.90]). Aligned with these results, SB supplementation increased total work done during the cycling capacity test at 110% Wmax (+8.5 kJ; 95% CI [3.6, 13.4], ∌19% increase) with no significant main effect of warm-up intensity (+0.0 kJ; 95% CI [-5.0, 5.0]). Collectively, the results demonstrate that SB supplementation can improve HI cycling capacity irrespective of prior warm-up intensity, likely due to blood alkalosis

    Direct and indirect impact of low energy availability on sports performance

    Get PDF
    Low energy availability (LEA) occurs inadvertently and purposefully in many athletes across numerous sports; and well planned, supervised periods with moderate LEA can improve body composition and power to weight ratio possibly enhancing performance in some sports. LEA however has the potential to have negative effects on a multitude of physiological and psychological systems in female and male athletes. Systems such as the endocrine, cardiovascular, metabolism, reproductive, immune, mental perception, and motivation as well as behaviors can all be impacted by severe (serious and/or prolonged or chronic) LEA. Such widely diverse effects can influence the health status, training adaptation, and performance outcomes of athletes leading to both direct changes (e.g., decreased strength and endurance) as well as indirect changes (e.g., reduced training response, increased risk of injury) in performance. To date, performance implications have not been well examined relative to LEA. Therefore, the intent of this narrative review is to characterize the effects of short-, medium-, and long-term exposure to LEA on direct and indirect sports performance outcomes. In doing so we have focused both on laboratory settings as well as descriptive athletic case-study-type experiential evidence

    Methodology review: a protocol to audit the representation of female athletes in sports science and sports medicine research

    Get PDF
    Female-specific research on sports science and sports medicine (SSSM) fails to mirror the increase in participation and popularity of women’s sport. Females have historically been excluded from SSSM research, particularly because their physiological intricacy necessitates more complex study designs, longer research times, and additional costs. Consequently, most SSSM practices are based on research with men, despite potential problems in translation to females due to sexual dimorphism in biological and phenotypical parameters as well as differences in event characteristics (e.g., race distances/durations). Recognition that erroneous extrapolations may hamper the efforts of females to maximize their athletic potential has created an impetus to acknowledge and readdress the sex disparity in SSSM research. To direct the priorities for future research, it is prudent to first develop a comprehensive understanding of the gaps in current knowledge by systematically “auditing” the literature. By conducting audits of the literature to highlight underdeveloped topics or identify potential problems with the quality of research, this information can then be used to expediently direct new research activities. This paper therefore presents a standardized audit methodology to establish the representation of female athletes in subdisciplines of existing SSSM research, including a template for reporting the results of key metrics. This standardized audit process will enable comparisons over time and between research subdisciplines. This working guide provides an important step toward achieving sex equity across SSSM research, with the eventual goal of providing evidence-based recommendations specific to the female athlete

    Auditing the representation of female versus male athletes in sports science and sports medicine research: evidence-based performance supplements

    Get PDF
    Although sports nutrition guidelines promote evidence-based practice, it is unclear whether women have been adequately included in the underpinning research. In view of the high usage rates of performance supplements by female athletes, we conducted a standardised audit of the literature supporting evidence-based products: ÎČ-alanine, caffeine, creatine, glycerol, nitrate/beetroot juice and sodium bicarbonate. Within 1826 studies totalling 34,889 participants, just 23% of participants were women, although 34% of studies included at least one woman. Across different supplements, 0–8% of studies investigated women exclusively, while fewer (0–2%) were specifically designed to compare sex-based responses. The annual publication of female-specific studies was ~8 times fewer than those investigating exclusively male cohorts. Interestingly, 15% of the female participants were classified as international/world-class athletes, compared with 7% of men. Most studies investigated performance outcomes but displayed poorer representation of women (16% of participants), whereas health-focussed studies had the greatest proportion of female participants (35%). Only 14% of studies including women attempted to define menstrual status, with only three studies (~0.5%) implementing best practice methodologies to assess menstrual status. New research should target the efficacy of performance supplements in female athletes, and future sports nutrition recommendations should specifically consider how well female athletes have contributed to the evidence-base

    Female Athlete Representation and Dietary Control Methods Among Studies Assessing Chronic Carbohydrate Approaches to Support Training

    Get PDF
    The aim of this audit was to assess the representation of female athletes, dietary control methods, and gold standard female methodology that underpins the current guidelines for chronic carbohydrate (CHO) intake strategies for athlete daily training diets. Using a standardized audit, 281 studies were identified that examined high versus moderate CHO, periodized CHO availability, and/or low CHO, high fat diets. There were 3,735 total participants across these studies with only ∌16% of participants being women. Few studies utilized a design that specifically considered females, with only 16 studies (∌6%) including a female-only cohort and six studies (∌2%) with a sex-based comparison in their statistical procedure, in comparison to the 217 studies (∌77%) including a male-only cohort. Most studies (∌72%) did not provide sufficient information to define the menstrual status of participants, and of the 18 studies that did, optimal methodology for control of ovarian hormones was only noted in one study. While ∌40% of male-only studies provided all food and beverages to participants, only ∌20% of studies with a female-specific design used this approach for dietary control. Most studies did not implement strategies to ensure compliance to dietary interventions and/or control energy intake during dietary interventions. The literature that has contributed to the current guidelines for daily CHO intake is lacking in research that is specific to, or adequately addresses, the female athlete. Redressing this imbalance is of high priority to ensure that the female athlete receives evidence-based recommendations that consider her specific needs

    Managing Female Athlete Health: Auditing the Representation of Female versus Male Participants among Research in Supplements to Manage Diagnosed Micronutrient Issues

    Get PDF
    Micronutrient deficiencies and sub-optimal intakes among female athletes are a concern and are commonly prevented or treated with medical supplements. However, it is unclear how well women have been considered in the research underpinning current supplementation practices. We conducted an audit of the literature supporting the use of calcium, iron, and vitamin D. Of the 299 studies, including 25,171 participants, the majority (71%) of participants were women. Studies with exclusively female cohorts (37%) were also more prevalent than those examining males in isolation (31%). However, study designs considering divergent responses between sexes were sparse, accounting for 7% of the literature. Moreover, despite the abundance of female participants, the quality and quantity of the literature specific to female athletes was poor. Just 32% of studies including women defined menstrual status, while none implemented best-practice methodologies regarding ovarian hormonal control. Additionally, only 10% of studies included highly trained female athletes. Investigations of calcium supplementation were particularly lacking, with just two studies conducted in highly trained women. New research should focus on high-quality investigations specific to female athletes, alongside evaluating sex-based differences in the response to calcium, iron, and vitamin D, thus ensuring the specific needs of women have been considered in current protocols involving medical supplements
    • 

    corecore